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Today’s aims

1. Motivation and crash-course for QSP¹ ⋆

2. Numerical interlude ⋆

3. Qubitization, block encodings, and QSVT² ⋆

4. Applications and the state of the art ⋆

5. The limits of QSVT, and alternative approaches ⋆

6. Open problems, recent progress, and outlook ⋆⋆⋆⋆

¹Quantum signal processing
²Quantum singular value transformation
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NMR and composite pulses

What can we do with many copies of an unknown but
consistent unitary process?¹ [Wim94, VC05, BHC04]

𝑉(𝜃),𝑉(𝜃),…,𝑉(𝜃)↦𝑈(𝜃)

Trivial
BB1

θ = −π θ = π

1

θ = 0

|⟨0
|U

(θ
)|0

⟩|2

¹E.g., Larmor precession in inhomogeneous magnetic field
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QSP is a tunable SU(2)-valued function

Single-qubit alternating circuit ansatz

Φ∈ℝ𝑛+1 ↦𝑈Φ(𝑥).

Unitary oracle is structured: 𝑊(𝑥) = 𝑒𝑖cos
−1(𝑥)𝜎𝑥

We program real phases Φ= {𝜙0,…,𝜙𝑛} to condition
output unitary on signal 𝑥 in a precise way

𝑊(𝑥) = [ 𝑥 𝑖√1−𝑥2

𝑖√1−𝑥2 𝑥 ], 𝑒𝑖𝜙 = [𝑒
𝑖𝜙

𝑒−𝑖𝜙].
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Properties of the QSP ansatz

|ψ⟩ · · ·

Can map 𝑃↔Φ efficiently; like classical filter!

Claim: can replace 𝑥 ∈ℝ with normal 𝐻, and more! I.e., a
block-matrix form of 𝑈Φ(𝐻).

Later: the theory of block encodings!
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The BB1 Protocol¹ as QSP

𝑈(𝜃) = 𝑒𝑖𝜋𝜎𝑧/2𝑉(𝜃)𝑒−𝑖𝜂𝜎𝑧𝑉(𝜃)𝑒2𝑖𝜂𝜎𝑧𝑉2(𝜃)𝑒−2𝑖𝜂𝜎𝑧𝑉(𝜃)𝑒𝑖𝜂𝜎𝑧

For 𝜂 = (1/2)cos−1(−1/4) ≈ 0.912 this yields:

𝑈(cos−1𝑥) = [𝑃(𝑥) 𝑖√1−𝑥2𝑄(𝑥)
∗ ∗ ],

|𝑃(𝑥)|2 =
1
8
(30𝑥2−45𝑥4+35𝑥6−15𝑥8+3𝑥10).

For small 𝜃, |⟨0|𝑈(𝜃)|0⟩|2 expands 1+(5/512)𝜃6+…

¹[Wim94]
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Achievable polynomials

Two components can be chosen (mostly) freely; e.g.,
𝐶(𝑥) = 0, and |𝐴(𝑥)|2 ≤1 on 𝑥 ∈ [−1,1]; measurement
in |±⟩ basis yields 𝑝+ = |𝐴(𝑥)|2

𝑈Φ(𝑥) = [𝐴(𝑥)+𝑖𝐵(𝑥) 𝑖√1−𝑥2[𝐶(𝑥)+𝑖𝐷(𝑥)]
∗ ∗ ]

Proof method: specify components, complete unitary,
and layer strip phases by induction

For other parameterizations (𝑥↦ [𝑧+𝑧−1]/2) or
ansätze, this can change!
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QSP ansätze and functional constraints

|𝑃|2+(1−𝑥2)|𝑄|2 = 1.

The circuit depth for 𝑃 of degree 𝑑 is 𝑑. Moreover, 𝑥↦−𝑥
changes signs of 𝑃,𝑄, and 𝑥 ∈ {±1,0} induce constraints

Partial specification (A, C) up to inequality is simpler!

Circumvention:¹ additional qubits + LCU [CW12], or
change phases to arbitrary SU(2) elements [MW24]

Finding 𝐴,𝐶 reduces to norm-constrained polynomial
approximation or interpolation!

¹To be discussed later!
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Numerical methods in QSP

Extensive study of phase finding algorithms¹

(𝑓,𝑔)↦ (𝐴,𝐶), then² (𝐴,𝐶)↦ (𝑃,𝑄), then (𝑃,𝑄)↦Φ.

(𝑃𝑛,𝑄𝑛)↦{(𝑃𝑛−1,𝑄𝑛−1), 𝜙𝑛} and induct.

Φ𝑡+1 =Φ𝑡−[𝐷𝐹(Φ𝑡)]−1(𝐹(Φ𝑡)−𝐴) quasi-Newton.

When Φ=Φ𝑅 and proper initialization, this works³ for
almost all ‖𝑓‖∞ ≤1. Proof known for Szegő functions!

QSPPACK: https://github.com/qsppack/QSPPACK
pyQSP: https://github.com/ichuang/pyqsp.

¹[Haa19, CDG+20, WDL22, MA24, ALM+24, NSYL25].
²By the Fejér-Riesz theorem [PS98]
³[DMWL21, DLNW24b, DLNW24a]

https://github.com/qsppack/QSPPACK
https://github.com/ichuang/pyqsp
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What we know: QSP usefully¹ characterizes achievable
SU(2)-valued functions

What we want to know: How can QSP usefully transform
quantum systems comprising many qubits?

Up next: finding qubits inside large unitaries

¹Stable, efficient classical companion algorithms
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Revisiting the Grover iterate

The ability to reflect about a quantum state is powerful¹

The product of two reflections generates a rotation in a
related plane [Jor75]

|𝑠⟩ = 𝜉|𝑡⟩+√1−𝜉2|𝑡⟂⟩,

|𝑡⟂⟩ = (1−𝜉2)−1[|𝑠⟩− ⟨𝑡|𝑠⟩|𝑡⟩].

The Grover iterate alternately reflects about the target
state |𝑡⟩ and the uniform superposition |𝑠⟩

−𝑆𝑠(𝜋)𝑆𝑡(𝜋) = [ −1+2𝜉2 −2𝜉√1−𝜉2

−2𝜉√1−𝜉2 1−2𝜉2 ][−1 0
0 1].

¹[Sze04, Gro05, Reg06, YLC14]
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φ

|s⟩

|s⊥⟩

|t⟩

|t⊥⟩

|t⟩+ |t⊥⟩√
2

|t⟩ − i|t⊥⟩√
2

Us(α) = eiα(2|s⟩⟨s|−I)

Ut(β) = eiβ (2|t⟩⟨t|−I)

𝑆𝑠(𝛼) = 𝐼 −(1−𝑒𝑖𝛼|𝑠⟩⟨𝑠|), 𝑆𝑡(𝛽) = 𝐼 −(1−𝑒𝑖𝛽|𝑡⟩⟨𝑡|).
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Block encoding [TT23]

Let 𝐴 ∈ℂ𝑟×𝑐 for 𝛼,𝜀 > 0.
Let 𝐵𝐿,1 ∈ ℂ𝑑×𝑟, 𝐵𝑅,1 ∈ ℂ𝑑×𝑐 have orthonormal columns.
A unitary 𝑈 ∈ℂ𝑑×𝑑 is an (𝛼,𝜀)-block encoding of 𝐴 if

‖𝐴−𝛼𝐵†
𝐿,1𝑈𝐵𝑅,1‖op

≤ 𝜀.

We denote Π𝐿 =𝐵𝐿,1𝐵
†
𝐿,1 and Π𝑅 =𝐵𝑅,1𝐵

†
𝑅,1, the orthogo-

nal projectors onto the span of the columns of 𝐵𝑅/𝐿,1.

E.g., a (1,0) block encoding, with 𝐵𝐿 = (𝐵𝐿,1,𝐵𝐿,2) and
𝐵𝑅 = (𝐵𝑅,1,𝐵𝑅,2) the unitary completions of 𝐵𝐿,1,𝐵𝑅,1:

𝐵†
𝐿𝑈𝐵𝑅 = [𝐴 ∗

∗ ∗], 𝐵†
𝐿(Π𝐿𝑈Π𝑅)𝐵𝑅 = [𝐴 0

0 0].
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An (𝛼,𝑎,𝜀)-block encoding of 𝐴 [GSLW19]

‖𝐴−𝛼(⟨0|⊗𝑎⊗𝐼)𝑈(|0⟩⊗𝑎⊗𝐼)‖ ≤ 𝜀,

where 𝐴 is 𝑠-qubit, and 𝑈 is (𝑠 +𝑎) qubit, and, e.g.,
(⟨0|⊗𝑎⊗𝐼) = 𝐵†

𝐿,1 and Π𝐿 = |0⟩⟨0|⊗𝑎⊗𝐼.

Sometimes say Π𝐿𝑈Π𝑅 =𝐴, ignoring zero blocks of 𝑈.
Then 𝐴 has a singular value decomposition

𝐴=∑𝑖 𝜉𝑖| ̃𝜓𝑖⟩⟨𝜓𝑖|, maps red to green!

Observe action of 𝑈 on a right singular vector

𝑈|𝜓𝑖⟩ = Π𝐿𝑈Π𝑅|𝜓𝑖⟩+(1−Π𝐿)𝑈|𝜓𝑖⟩ (1)

= 𝜉𝑖|𝜓𝑖⟩+√1−𝜉2
𝑖 | ∗ ⟩ (2)
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Let Π𝐿,Π𝑅,𝑈,𝐴 as before, 𝜉𝑖 the 𝑖-th singular value of 𝐴, 𝑘
the largest index where 𝜉𝑘 = 1, and 𝑟 = rank(𝐴).

𝐴=∑𝑖 𝜉𝑖| ̃𝜓𝑖⟩⟨𝜓𝑖|

𝑑 = rank(Π𝑅), ̃𝑑 = rank(Π𝐿); |𝜓𝑖⟩/| ̃𝜓𝑖⟩ are the right/left
singular vectors of 𝐴 (bases for img(Π𝑅), img(Π𝐿)).¹

|𝜓⟂
𝑖 ⟩ ∝ (𝐼 −Π𝑅)𝑈

†| ̃𝜓𝑖⟩,
| ̃𝜓⟂

𝑖 ⟩ ∝ (𝐼 −Π𝐿)𝑈|𝜓𝑖⟩.

ℋ𝑖 = span(|𝜓𝑖⟩), ℋ̃𝑖 = span(| ̃𝜓𝑖⟩), 𝑖 ∈ [𝑘],

ℋ𝑖 = span(|𝜓𝑖⟩,|𝜓
⟂
𝑖 ⟩), ℋ̃𝑖 = span(| ̃𝜓𝑖⟩,| ̃𝜓⟂

𝑖 ⟩), 𝑖 ∈ [𝑟]\[𝑘],
ℋ𝑅

𝑖 = span(|𝜓𝑖⟩), ℋ̃𝑅
𝑖 = span(𝑈|𝜓𝑖⟩), 𝑖 ∈ [𝑑]\[𝑟],

ℋ𝐿
𝑖 = span(𝑈†| ̃𝜓𝑖⟩), ℋ̃𝐿

𝑖 = span(| ̃𝜓𝑖⟩), 𝑖 ∈ [ ̃𝑑]\[𝑟].

¹Note also ℋ⟂/ℋ̃⟂, where action of 𝑈 is unspecified.
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Qubitization: we have to show ℋ𝑖, ℋ
𝑅
𝑖 , and ℋ𝐿

𝑖 and so
on are pairwise orthogonal:

⟨𝜓𝑖|𝜓𝑗⟩ = 𝛿𝑖𝑗, ℋ𝑖 ⟂ℋ𝑗, (3)

⟨ ̃𝜓𝑖| ̃𝜓𝑗⟩ = 𝛿𝑖𝑗, ℋ̃𝑖 ⟂ℋ̃𝑗, (4)

⟨𝜓⟂
𝑖 |𝜓

⟂
𝑗 ⟩ = ⟨ ̃𝜓⟂

𝑖 | ̃𝜓⟂
𝑗 ⟩ = 𝛿𝑖𝑗, (ℋ𝑖)

⟂ ⟂ (ℋ̃𝑗)
⟂, (5)

⟨𝜓𝑖|𝜓
⟂
𝑗 ⟩ = ⟨ ̃𝜓𝑖| ̃𝜓⟂

𝑗 ⟩ = 0, ∗/∗ ⟂ ∗/∗, (6)

⟨𝜓𝑖|𝑈
†| ̃𝜓𝑗⟩ = 0, 𝑈†| ̃𝜓𝑗⟩ ∈ℋ𝐿

𝑗 , (7)

⟨𝜓⟂
𝑖 |𝑈

†| ̃𝜓𝑗⟩ = 0, 𝑈†| ̃𝜓𝑗⟩ ∈ℋ𝐿
𝑗 . (8)

The first three from singular vector orthogonality; note
that ⟨ ̃𝜓𝑖|𝑈Π𝑅𝑈

†| ̃𝜓𝑗⟩ can be replaced by ⟨ ̃𝜓𝑖|𝐴𝐴
†| ̃𝜓𝑗⟩. The

final three follow from definition of projectors.
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The components of the QSVT circuit¹

𝑈 = ⨁
𝑖∈[𝑘]

[𝜉𝑖]
ℋ𝑖
ℋ̃𝑖

⊕ ⨁
𝑖∈[𝑟]\[𝑘]

[ 𝜉𝑖 √1−𝜉2
𝑖

√1−𝜉2
𝑖 𝜉𝑖

]
ℋ𝑖

ℋ̃𝑖

⊕

⨁
𝑖∈[𝑑]\[𝑟]

[1]ℋ
𝑅
𝑖

ℋ̃𝑅
𝑖
⊕ ⨁

𝑖∈[ ̃𝑑]\[𝑟]
[1]ℋ

𝐿
𝑖

ℋ̃𝐿
𝑖
⊕[∗]ℋ

⟂

ℋ̃⟂ ,

𝑒𝑖𝜙(2Π𝑅−𝐼) = ⨁
𝑖∈[𝑘]

[𝑒𝑖𝜙]ℋ𝑖
ℋ𝑖

⊕ ⨁
𝑖∈[𝑟]\[𝑘]

[𝑒
𝑖𝜙 0
0 𝑒−𝑖𝜙]

ℋ𝑖

ℋ𝑖

⊕

⨁
𝑖∈[𝑑]\[𝑟]

[𝑒𝑖𝜙]ℋ
𝑅
𝑖

ℋ𝑅
𝑖
⊕ ⨁

𝑖∈[𝑑]\[𝑟]
[𝑒−𝑖𝜙]ℋ

𝐿
𝑖

ℋ𝐿
𝑖
⊕[∗]ℋ

⟂

ℋ⟂ ,

¹Our notation maps top subspace to bottom: r ↓ g



zmr@g.ecc.u-tokyo.ac.jp 21

QSVT [GSLW19]: Let Φ= {𝜙𝑗}𝑗∈[𝑛] ∈ℝ𝑛; the QSVT pro-
tocol associated with Φ and block encoding 𝑈 has circuit
(taking 𝑛 odd):

𝑈Φ ≡ 𝑒𝑖𝜙1(2Π𝐿−𝐼)𝑈
(𝑛−1)/2

∏
𝑗=1

𝑒𝑖𝜙2𝑗(2Π𝑅−𝐼)𝑈†𝑒𝑖𝜙2𝑗+1(2Π𝐿−𝐼)𝑈.

Simultaneous QSP with phases Φ within exponentially
many invariant subspaces, given 𝑈, 𝑈†, single-qubit gates,
and Π𝑅/𝐿-controlled NOT.
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[𝑃(𝜉𝑖)]
ℋ𝑖
ℋ̃𝑖

⊕ ⨁
𝑖∈[𝑟]\[𝑘]

[𝑃(𝜉𝑖) ∗
∗ ∗ ]

ℋ𝑖

ℋ̃𝑖

⊕

⨁
𝑖∈[𝑑]\[𝑟]

[𝑒𝑖𝜙0]ℋ
𝑅
𝑖

ℋ̃𝑅
𝑖
⊕ ⨁

𝑖∈[ ̃𝑑]\[𝑟]
[𝑒−𝑖𝜙0]ℋ

𝐿
𝑖

ℋ̃𝐿
𝑖
⊕[∗]ℋ

⟂

ℋ̃⟂ ,
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QSVT [GSLW19]: Let Φ= {𝜙𝑗}𝑗∈[𝑛] ∈ℝ𝑛; the QSVT pro-
tocol associated with Φ and block encoding 𝑈 has circuit
(taking 𝑛 odd):

𝑈Φ ≡ 𝑒𝑖𝜙1(2Π𝐿−𝐼)𝑈
(𝑛−1)/2

∏
𝑗=1

𝑒𝑖𝜙2𝑗(2Π𝑅−𝐼)𝑈†𝑒𝑖𝜙2𝑗+1(2Π𝐿−𝐼)𝑈.

Simultaneous QSP with phases Φ within exponentially
many invariant subspaces, given 𝑈, 𝑈†, single-qubit gates,
and Π𝑅/𝐿-controlled NOT.

n∏
k=1

=

[
WP (Σ)V † · · ·

...
. . .

]
U † ΠL ΠL U ΠR ΠR

eiϕ2kZ eiϕ2k−1Z
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Another approach:¹ the cosine-sine decomposition

It turns out one can produce simultaneous SVDs for
multiple unitaries at once: 𝑈𝑖𝑗 =𝑉𝑖𝐷𝑖𝑗𝑊

†
𝑗 [TT23, PW94]

Let 𝑈 ∈ℂ𝑑×𝑑 a unitary matrix partitioned into blocks of
size {𝑟1, 𝑟2}×{𝑐1, 𝑐2}:

[𝑈11 𝑈12
𝑈21 𝑈22

], where 𝑈𝑖𝑗 ∈ℂ𝑟𝑖×𝑐𝑗 ,

Then there exist unitaries 𝑉𝑖 ∈ℂ𝑟𝑖×𝑟𝑖 and 𝑊𝑗 ∈ℂ𝑐𝑗×𝑐𝑗 s.t.

[𝑈11 𝑈12
𝑈21 𝑈22

] = [𝑉1
𝑉2

][𝐷11 𝐷12
𝐷21 𝐷22

][𝑊1
𝑊2

]
†
,

where each 𝐷𝑖𝑗 is diagonal in ℂ𝑟𝑖×𝑐𝑗 , possibly zero-padded.

¹The CSD is also useful in gate synthesis! [Tan25]
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Specifically, we can write 𝐷 as:

[𝐷11 𝐷12
𝐷21 𝐷22

] =

⎡⎢⎢⎢⎢⎢

⎣

0 𝐼
𝐶 𝑆

𝐼 0
𝐼 0

𝑆 −𝐶
0 −𝐼

⎤⎥⎥⎥⎥⎥

⎦

,

= [0 𝐼
𝐼 0]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝒳0→𝒴0

⊕ [𝐶 𝑆
𝑆 −𝐶]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝒳𝐶→𝒴𝐶

⊕ [𝐼 0
0 −𝐼]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝒳1→𝒴1

.

where 𝐶, 𝑆 are square w/ entries in (0,1), and 𝐶2+𝑆2 = 𝐼
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Cosine-sine decomposition proof sketch

1. Start with the SVD of one block 𝑈11 =𝑉1𝐷11𝑊
†
1

2. Compute QR decompositions of 𝑈21𝑊1 and 𝑈†
12𝑉1,

giving 𝑉2,𝑊2 to make these operators upper-diagonal with
nonnegative diagonal entries:

[𝑉1
𝑉2

]
†
[𝑈11 𝑈12
𝑈21 𝑈22

][𝑊1
𝑊2

] = [
𝐷11 𝐷12
𝐷21 𝑉†

2𝑈22𝑊2
].

3. Observing the rest of the unitary (whose rows and
columns must be orthonormal), this forces the entries of
𝐷12, 𝐷21 to be diagonal and 𝐶2+𝑆2 = 𝐼

4. Choose 𝑊2 ↦𝑊 ′
2 to correct 𝐷22 (free up to unitary).



zmr@g.ecc.u-tokyo.ac.jp 25

The limits of qubitization

In general, invariant subspaces for two reflections are only
one- and two-dimensional [Jor75]

No good notion for quditization

Weaker variants of G-SVD do exist, applying to many
matrices at once [PW94]

Question: Weaker qubitization? Can we transform Jordan
blocks [LS24] ? Irrep labels? Oracle-marked subspaces?



zmr@g.ecc.u-tokyo.ac.jp 25

The limits of qubitization

In general, invariant subspaces for two reflections are only
one- and two-dimensional [Jor75]

No good notion for quditization

Weaker variants of G-SVD do exist, applying to many
matrices at once [PW94]

Question: Weaker qubitization? Can we transform Jordan
blocks [LS24] ? Irrep labels? Oracle-marked subspaces?



zmr@g.ecc.u-tokyo.ac.jp 25

The limits of qubitization

In general, invariant subspaces for two reflections are only
one- and two-dimensional [Jor75]

No good notion for quditization

Weaker variants of G-SVD do exist, applying to many
matrices at once [PW94]

Question: Weaker qubitization? Can we transform Jordan
blocks [LS24] ? Irrep labels? Oracle-marked subspaces?



zmr@g.ecc.u-tokyo.ac.jp 25

The limits of qubitization

In general, invariant subspaces for two reflections are only
one- and two-dimensional [Jor75]

No good notion for quditization

Weaker variants of G-SVD do exist, applying to many
matrices at once [PW94]

Question: Weaker qubitization? Can we transform Jordan
blocks [LS24] ? Irrep labels? Oracle-marked subspaces?



zmr@g.ecc.u-tokyo.ac.jp 26

[Wim94, VC05]
[YLC14]

Proto-QSP
[LYC14][LYC16]
[LC17]

QSP

[LC19]
[GSLW19]

QSVT

[RC22, MW24]
[RCC23, RBMC23]

QSP Ext.

[WDL22]

Sym QSP

[DMWL21, WDL22]
[DLNW24b, DLNW24a]

QSP opt.

[Haa19]
[CDG+20]

QSP num.

[MA24, ALM+24]
[NSYL25, Ros25]

NLFT+

[CGL+20]
[GLG23]

ML apps

[Ral21, MR25]
[MRC+25]

Est apps

[LC17]

Sim

[CW12]
[BCK15]

LCU

[LS24, ACL23]
[LS25]

LCHS+

[LKAS+21, GLM+22]
[MLCC23, KLB+25]

Sim+

[SLBB25]

LCHS apps

slides: pedalferrous.github.io

[MRTC21]
[TT23]
[Lin25]

QSVT guides

[GSLW19, LT20]
[CAS+22]

Lin sys



zmr@g.ecc.u-tokyo.ac.jp 27

QSP is all∗ you need¹

Matrix functions for large∗ linear operators

𝐴=∑
𝑘
𝜉𝑘| ̃𝜓𝑘⟩⟨𝜓𝑘| ⟼

QSVT
∑
𝑘
𝑃(𝜉𝑘)| ̃𝜓𝑘⟩⟨𝜓𝑘| = 𝑃(𝐴)

Search:
Input Grover oracle, apply constant function
Low energy projection:
Input Hamiltonian, apply bandpass function
Inversion:
Input sparse linear sys, apply 1/𝑥 approximation
Simulation:
Input Hamiltonian, apply trig function …

Changing the polynomial changes the algorithm

¹[MRTC21]
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QSVT in practice

Simulation

Linear system solving

Estimation tasks

QSVT is most useful when demanding precise, co-
herent answers to discrete or adaptive questions¹

QSVT captures BQP-complete problems; if you ask for
too much, it’ll be expensive

¹E.g., cryptography [LMS21], modified QPE [Ral21].
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Block encodings, revisited

1. Approximating generic unitaries is expensive [KSV02]

2. Blocks have spectral norm bound of one; projecting
onto proper block requires amplification [GSLW19]

Moral: Block encodings circuits have to be efficient, and
subnormalization can’t be too severe

: Constant factors seem to matter [KREO25]; error
propagation requires care [TT23, GSLW19]
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When is block encoding asymptotically cheap?

Controlled access, sparsity, purification unitary [GSLW19],
displacement structure [CLVBY24], Hamiltonian evolution
[LKAS+21], state copies [LMR14] ...

{𝜌,𝜌,…,𝜌} ↦ 𝑒𝑖𝜌𝑡 ↦ [𝜌 ∗
∗ ∗ ]

Multiple quantitative investigations for realistic instances
[SCC24, CLVBY24, KREO25]

Beyond instantiation, diverse methods for (approximately)
combining block encodings [LW19, VG25]
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Is QSVT the end of quantum algorithms?

Helps once you’ve converted problem to spectral mapping
& ensured efficient block encoding

QSVT already captures BQP-complete problems

Highly coherent, though space efficient

A clean abstraction; use of diverse functional analytic,
representation theoretic, and numerical linear algebraic
tools is made clear
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A note on dequantization and QSVT

Moral: If matrix is low rank, block encoding is
QRAM-based,¹ or your required precision is constant, then
sketching methods work [CGL+20, GLG23, EHG25]

(Over)sampling and query access: analogues to
quantum state preparation assumptions

In practice, there may be large polynomial separations
even in these cases, but improvement is rapid!

¹E.g., recommendation systems, principal component analysis,
supervised clustering, support vector machines, low-rank regression,
semidefinite program solving, etc.
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¹E.g., recommendation systems, principal component analysis,
supervised clustering, support vector machines, low-rank regression,
semidefinite program solving, etc.
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The great family of block encoding algorithms

QSP [LC17], QSVT [GSLW19], QEP [LS24], G-QSP
[MW24], M-QSP [RC22], LCU [CW12], LCHS [ACL23],
randomized, parallelized, and hybrid variants!

Unifying aspect: precise control of subsystem dynamics

Comparison not always possible, and choices between
these can depend on architecture and instance size!
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Linear combination of unitaries (LCU) [CW12, BCK15]

Originally formulated for efficient Hamiltonian simulation

Let 𝑉 =∑𝑘𝛼𝑘𝑈𝑘 for 𝛼𝑘 > 0 and 𝑈𝑘 unitary. Let 𝑊 be any
unitary that acts as

𝑊|0⟩ =
1
√𝛼

∑
𝑘
√𝛼𝑘|𝑘⟩, 𝛼 ≡∑

𝑘
𝛼𝑘.

Then

𝑊† [∑
𝑘
|𝑘⟩⟨𝑘|⊗𝑈𝑘]𝑊 ≡𝑊†𝑈𝑊

is an (𝛼,∗,0) block encoding of𝑉. Often𝑊,𝑈 are referred
to as the prepare and select operations.
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LCU, QSVT, and Hamiltonian simulation

Desired transformation written as a sum of block-encoded
unitaries ⟹ LCU describes costs

Time-independent Hamiltonian sim for 𝑑-term LCU

Method aux qubits query comp
LCU [log𝑑] log(𝛼𝑡/𝜀) [𝛼𝑡] log(𝛼𝑡/𝜀)
QSVT log𝑑 𝛼𝑡+ log(1/𝜀)

QSVT insight: quick approximation of entire functions

cos(𝑥𝑡) = 𝐽0(𝑡)+2
∞

∑
𝑘=1

(−1)𝑘𝐽2𝑘(𝑡)𝑇2𝑘(𝑥),

sin(𝑥𝑡) = 2
∞

∑
𝑘=0

(−1)𝑘𝐽2𝑘+1(𝑡)𝑇2𝑘+1(𝑥),
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Simulation beyond QSVT: LCHS

𝑢̇(𝑡) = −𝐴(𝑡)𝑢(𝑡)+𝑏(𝑡), 𝑢(0) = 𝑢0.

Approximating 𝑢(𝑡) relies on time-ordered integral:

𝑢(𝑡) = 𝑈0(𝑡)𝑢0+⌠
⌡

𝑡

0
𝑈𝑠(𝑡)𝑏(𝑠)𝑑𝑠,

𝑈𝑠(𝑡) ≡𝒯exp[⌠
⌡

𝑡

𝑠
𝐴(𝑠 ′)𝑑𝑠 ′].

This is not a matrix function, but it is linear combination
of Hermitian Ham sims [ACL23, LS25, SLBB25]

∀𝑥 ≥ 0, 𝑒−𝑥 =
1

√2𝜋
⌠
⌡ℝ

̂𝑓(𝑘)𝑒−𝑖𝑘𝑥 𝑑𝑘

⟹ ∀𝑡 ≥ 0, 𝑒−(𝐿+𝑖𝐻)𝑡 =
1

√2𝜋
⌠
⌡ℝ

̂𝑓(𝑘)𝑒−𝑖(𝑘𝐿+𝐻)𝑡 𝑑𝑘.
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LCHS: utility and complexity

𝑢𝑟𝛼𝑡 log(1/𝜀), 𝑢𝑟 = ‖𝑢‖𝐿∞/|𝑢(𝑡)|

In addition to pole, ̂𝑓 is chosen to have its inverse Fourier
coefficients decay exponentially

The key insight of [LS25] is that this decay only needs
occur on infinite strip, not the half plane

Integral quadrature can be technical [ACL23, TW14]

Beyond 𝑒−𝑥, approximations for 1/𝑥 permit linear matrix
equation solvers [SLBB25], e.g., 𝐴𝑋 −𝑋𝐵 =𝐶
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The quantum linear system problem: 𝐴𝑥 = 𝑏

QSVT exhibits suboptimal condition num dependence

Algorithm Query comp. N.b.
HHL [HHL09] 𝑂(𝜅2/𝜀) VTAA
LCU [CKS17] 𝑂(𝜅2 polylog(𝜀−1)) VTAA
QSVT [GSLW19] 𝑂(𝜅2 log(𝜀−1))
VTAA [Amb10] 𝑂(𝜅polylog(𝜅𝜀−1)) Overhead
Adiabatic [CAS+22] 𝑂(𝜅polylog(𝜀−1))
Eig. filter [LT20] 𝑂(𝜅 log(𝜀−1)) Adiabatic

Moral: block encoding 𝐴−1 requires subnormalizing by 𝜅,
meaning 𝑂(𝜅) amp, and thus 𝑂(𝜅2) query comp.
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meaning 𝑂(𝜅) amp, and thus 𝑂(𝜅2) query comp.
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The quantum linear system problem: 𝐴𝑥 = 𝑏

QSVT exhibits suboptimal condition num dependence
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Tradeoffs in the great family

1. QSVT depends on ‖𝑓‖∞, while LCU depends on |𝑓|1
2. Bounded approx introduces logarithmic overhead

3. Space use in QSVT (post block encoding) is constant in
poly degree, while LCU’s is logarithmic¹

4. Ham sim for QSVT+ scales with spectral norm; in-place
commutator-scaling (fancy) Trotter methods are (nearly)
linear in time [CST+21, LKW19]

The utility of log(1/𝜀) error dependence outside
subroutines is debatable

¹For entire functions, this is doubly-log in error.
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Open avenues in the near-term

Moving beyond
spectral
mapping

Weaker access
models and

hybrid methods

More flexible
proof

techniques

Past examples include LCHS [LS25], multiproduct
formulas [LKW19], and SKTs for QSP [Ros25]

We need more end-to-end analysis for realistic problem
instances! Most operations can be fuzzed!
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Block encoding algorithms & machine learning

Great platform for dequantization efforts [CGL+20]

Investigations into quantum analogues of universal
approximators [PSLNnGS+21, PSCLGFL20, Ros25]

Plenty of work left in realizing matrix manipulations
efficiently (e.g., inference step in transformers [GYC+25])
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Block encoding algorithms & machine learning

Great platform for dequantization efforts [CGL+20]

Investigations into quantum analogues of universal
approximators [PSLNnGS+21, PSCLGFL20, Ros25]

Plenty of work left in realizing matrix manipulations
efficiently (e.g., inference step in transformers [GYC+25])

As always, caveat lector
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Take-home

QSP/QSVT are one offshoot of a growing family of quan-
tum algorithms for efficiently manipulating sub-blocks
of unitary matrices

These algorithms and their hybrids enable importation of
vast techniques from applied mathematics

Regimes in which one method quantitatively outperforms
another are complex and evolving

We have limited tools beyond qubitization for nonlinear
transformations of subsystem dynamics
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Take-home

QSP/QSVT are one offshoot of a growing family of quan-
tum algorithms for efficiently manipulating sub-blocks
of unitary matrices

These algorithms and their hybrids enable importation of
vast techniques from applied mathematics

Regimes in which one method quantitatively outperforms
another are complex and evolving

We have limited tools beyond qubitization for nonlinear
transformations of subsystem dynamics

We’re not yet sufficiently optimistic
about these algorithms!
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Szegő functions

A real-valued measureable even function
𝑓 ∶ [0,1]→ [−1,1] is called Szegő if it satisfies

⌠
⌡

1

0
log |1−𝑓(𝑥)2|

𝑑𝑥
√1−𝑥2

>−∞ (9)

Szegő functions come with a norm showing they’re a
subset of square-summable

The work of [ALM+24] shows that Szegő functions
satisfying ‖𝑓‖∞ ≤1−𝜂 admit unique QSP phases, and
produce a unitary with a matrix element converging to 𝑓 in
a nice way, and that

‖Φ−Φ′‖∞ ≤𝑂(𝜂−3)‖𝑓−𝑓′‖𝑆. (10)
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Hybrid methods in block encoding algorithms

Hybrid oscillator-qubit systems in experiment [LSS+25]

LCU of product formulas [CST+21, LKW19]

Parallel, randomized, and self-composed QSP/QSVT
[RCC23, MRC+25, MR25]

Approximate or accelerated products for block encodings
[LW19, VG25]
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On the optimality of QSP/QSVT

Lower bound for eig. transformation; Thm. 73 [GSLW19]
Let 𝐼 ⊆ [−1,1], 𝑎 ≥ 1 and suppose 𝑈 is a (1,𝑎,0)-block encoding
of an unknown Hermitian matrix 𝐻 with the promise that the
spectrum of 𝐻 lies within 𝐼. Let 𝑓 ∶ 𝐼 →ℝ, and suppose access to
a quantum circuit 𝑉 that implements a (1,𝑏,𝜀)-block encoding
of 𝑓(𝐻) using 𝑇 applications of 𝑈 for all 𝑈 satisfying the
promise. Then for all 𝑥 ≠ 𝑦 ∈ 𝐼 ∩[−1/2,1/2] we have that

𝑇 =Ω[
|𝑓(𝑥)−𝑓(𝑦)|−2𝜀

|𝑥−𝑦|
]

Lower bound for quantum matrix functions; [MS24]
For any continuous function 𝑓(𝑥) ∶ [−1,1]→ [−1,1], there is a
2-sparse Hermitian matrix 𝐴 with |𝐴| ≤ 1 and two indices 𝑖, 𝑗
such that Ω(d̃eg𝜀(𝑓)) queries to 𝐴 are required in order to
compute ⟨𝑖|𝑓(𝐴)|𝑗⟩±𝜀/4.


