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An overview of QSP/QSVT literature†

Early work: focused on Hamiltonian simulation, composite pulses.
[YLC14, LYC16, LC19, Haa19].

Broad and pedagogical works on QSVT : general reference.
[GSLW19], [MRTC21].

For a CS reader : connected to numerical linear algebra.
[TT23].

For a math reader : connected to nonlinear Fourier theory.
[AMT23, ALM+24].

Generalizations, extensions, variants: recent progress in
simplifying analysis and relaxing input assumptions.
[MW23, RC22, WDL21, DLNW22, RCC23].

† Green text indicates a recommended entry-level paper.
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Quantum signal processing (QSP) is an SU(2)-valued map

Single-qubit alternating circuit taking Φ ∈ Rn+1 to UΦ(x).
Oracle access to structured unitary W (x) = e i cos−1(x)σx .

User ‘programs’ Φ = {φ0, · · · , φn} to condition unitary on signal x

|ψ⟩ · · ·

Can go P 7→ Φ and Φ 7→ P efficiently; just like classical filter!1

Claim: can replace2 x ∈ R with H = H† ∈ Cm×m; block UΦ(H).

1[LYC16,LC17]

2[LC19, GSLW19]
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Talk outline and intent

Part I: motivate and demystify QSVT by providing two ‘lifting
arguments’ with commentary.

Part II: discuss reduction to QSP, and functional analytic tools
that make this reduction worthwhile.

Part III: discuss common applications, guidelines, and recent
extensions (multivar, randomized, functional programming, etc.).
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Part I: Lifting arguments for QSVT
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Block encoding; adapted from [TT23]
Let A ∈ Cr×c and α, ε > 0; a unitary U ∈ Cd×d is an (α, ε)-block
encoding of A if there exist BL,1 ∈ Cd×r ,BR ,1 ∈ Cd×c with
orthonormal columns s.t. ‖A − αB†

L,1UBR ,1‖op ≤ ε. We denote
B†

L,1BL,1 = ΠL and B†
R ,1BR ,1 = ΠR , orthogonal projectors.

U, a block matrix, contains something ε-close to αA in its top left
sub-block. Taking (1, 0) block encoding, with BL = (BL,1,BL,2)
and BR = (BR ,1,BR ,2) unitary completions of BL,1,BR ,1:

B†
LUBR =

[
A ∗
∗ ∗

]
, B†

L(ΠLUΠR)BR =

[
A 0
0 0

]
.

An alternative definition is sometimes given, as in Def. 43 of
[GSLW19], where a (α, a, ε)-block encoding of A satisfies

‖A − α(〈0|⊗a ⊗ I)U(|0〉⊗a ⊗ I)‖ ≤ ε,

where A is an s-qubit operator, and U is an (s + a) qubit unitary.
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QSVT unitary; Def. 15 [GSLW19]
Let Φ = {φj}j∈[n] ∈ Rn; the QSVT protocol associated with Φ and
a 2× 2 block unitary U has circuit form (taking n even):

UΦ ≡
∏

j∈[n/2]
e iφ2j−1(2ΠR−I)U†e iφ2j(2ΠL−I)U.

QSVT main theorem (informal)
Let U ∈ Cd×d a block encoding of A, and let Φ ∈ Rn such that its
QSP protocol achieves P(x) ∈ C[x ]. Then (taking n even)

ΠRUΦΠR =

[
P(SV )(A) 0

0 0

]
.

In other words, within the block, he polynomial is the same as
would have been applied by the QSP protocol for Φ.
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n∏
k=1

=

[
WP (Σ)V † · · ·

...
. . .

]
U † Π̃ Π̃ U Π Π

eiϕ2kZ eiϕ2k−1Z

Note when image of projector is a single-qubit pure state, a trick
allows for the direct recovery of simpler qubitization method.

H H

e−2πiθU2j

e−iφZ

|u〉

|0〉

|0〉

...
...

H H

e−2πiθU2j

eiφZ

|u〉

|0〉

...
...

=
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The trick to making QSP useful

The theory of QSP is basically ‘non-quantum‘; good for
understanding, but how can we match quantum information
processing tasks to its simple form?

We’ll rely on a lifting argument, showing that interleaving large
unitaries induces simple action in invariant subspaces.

This idea is not new, and appears in Grover search and QMA
amplification [Gro05, Reg06]; the core observation has been known
since 19th century. [Jor75]

1√
N
|m〉+

√
N − 1

N |m⊥〉 7→ − 1√
N
|m〉+

√
N − 1

N |m⊥〉.
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We can explicitly construct invariant subspaces. Let ΠR ,ΠL,U,A
as before, and k the largest index for which ξk = 1, where ξk is the
k-th SV of A ordered by decreasing size, and r = rank(A).

Recall: A =
∑

i ξi |ψ̃i〉〈ψi |.

Hi = span(|ψi〉), H̃i = span(|ψ̃i〉), i ∈ [k], (1)
Hi = span(|ψi〉, |ψ⊥

i 〉), H̃i = span(|ψ̃i〉, |ψ̃⊥
i 〉), i ∈ [r ]\[k], (2)

HR
i = span(|ψi〉), H̃R

i = span(U|ψi〉), i ∈ [d ]\[r ], (3)
HL

i = span(U†|ψ̃i〉), H̃L
i = span(|ψ̃i〉), i ∈ [d̃ ]\[r ]. (4)

Here d = rank(ΠR), d̃ = rank(ΠL), and |ψi〉 and |ψ̃i〉 are the right
and left SVecs of A; i.e., orthonormal bases for (img)(ΠR) and
img(ΠL). The (⊥) superscript follows:

|ψ⊥
i 〉 ≡ (

√
1− ξ2i )

−1(I −ΠR)U†|ψ̃i〉, (5)

|ψ̃⊥
i 〉 ≡ (

√
1− ξ2i )

−1(I −ΠL)U|ψi〉. (6)
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Qubitization shows that Hi , HR
i , and HL

i are pairwise orthogonal,
which we summarize and motivate:

〈ψi |ψj〉 = δij , Hi ⊥ Hj , (7)
〈ψ̃i |ψ̃j〉 = δij , H̃i ⊥ H̃j , (8)

〈ψ⊥
i |ψ⊥

j 〉 = 〈ψ̃⊥
i |ψ̃⊥

j 〉 = δij , (Hi/Hi)
⊥ ⊥ (H̃j/H̃j)

⊥, (9)
〈ψi |ψ⊥

j 〉 = 〈ψ̃i |ψ̃⊥
j 〉 = 0, ∗/∗ ⊥ ∗/∗, (10)

〈ψi |U†|ψ̃j〉 = 0, U†|ψ̃j〉 ∈ HL
j , (11)

〈ψ⊥
i |U†|ψ̃j〉 = 0, U†|ψ̃j〉 ∈ HL

j . (12)

The first three follow from the orthogonality of singular vectors;
note that 〈ψ̃i |UΠRU†|ψj〉 can be replaced by 〈ψ̃i |AA†|ψj〉 freely.
The action of U is to take all |ψi〉 to their corresponding |ψ̃j〉
vectors, and ΠR ,ΠL project onto the span of the tilde and
non-tilde orthogonal bases. The final three identities follow from
the action of the projectors on vectors not in their images.
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In qubitization, large unitary breaks into direct sum of qubit-like
maps. Brackets indicate map from superscript to the subscript:

U =
⊕

i∈[k]
[ξi ]

Hi
H̃i

⊕
⊕

i∈[r]\[k]

 ξi
√

1 − ξ2i√
1 − ξ2i ξi

Hi

H̃i

⊕ [1]
HR

i ⊕HL
i

H̃R
i ⊕H̃L

i
⊕ [∗]H

⊥
H̃⊥ , (13)

eiφ(2ΠR−I)
=

⊕
i∈[k]

[eiφ
]
Hi
Hi

⊕
⊕

i∈[r]\[k]

[
eiφ 0

0 e−iφ

]Hi

Hi

⊕ [eiφ
]
HR

i
HR

i
⊕ [e−iφ

]
HL

i
HL

i
⊕ [∗]H

⊥
H⊥ , (14)

eiφ(2ΠL−I)
=

⊕
i∈[k]

[eiφ
]
H̃i
H̃i

⊕
⊕

i∈[r]\[k]

[
eiφ 0

0 e−iφ

]H̃i

H̃i

⊕ [e−iφ
]
H̃R

i
H̃R

i
⊕ [eiφ

]
H̃L

i
H̃L

i
⊕ [∗]H̃

⊥
H̃⊥ , (15)

This can be explicitly verified from the known relations among
ΠL,ΠR ,U,A. Important subspaces are non-trivial Hi , H̃i .

In some sense, nothing besides U(2) operations could have
happened in these subspaces! And this imposes constraints!
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Alternatively, the cosine-sine decomposition arises for unitary U
with 2× 2 block form. It turns out one can produce simultaneous
SVDs satisfying Uij = ViDijW †

j :

Cosine-sine decomposition (CSD) statement
Let U ∈ Cd×d a unitary matrix partitioned into blocks of size
{r1, r2} × {c1, c2}:[

U11 U12

U21 U22

]
, where Uij ∈ Cri×cj ,

Then there exist unitaries Vi ∈ Cri×ri and Wj ∈ Ccj×cj such that[
U11 U12

U21 U22

]
=

[
V1

V2

] [
D11 D12

D21 D22

] [
W1

W2

]†
,

where blanks are the zero matrix, and each Dij is diagonal in
Cri×cj , possibly padded with zeros.
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Specifically, we can write D in the form:

[
D11 D12

D21 D22

]
=



0 I
C S

I 0

I 0
S −C

0 −I

 ,

=

[
0 I
I 0

]
︸ ︷︷ ︸
X0→Y0

⊕
[
C S
S −C

]
︸ ︷︷ ︸
XC→YC

⊕
[

I 0
0 −I

]
︸ ︷︷ ︸
X1→Y1

.

where C ,S, I are square diagonal matrices, and C ,S have entries in
the interval (0, 1) on their diagonal, and C2 + S2 = I.
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Idea of the proof of CSD

(1) Start with the SVD of U11 = V1D11W †
1 , noting SVs in [0, 1].

(2) Compute QR decompositions of U21W1 and U†
12V1, which

give V2,W2 to make these operators upper-diagonal with
nonnegative diagonal entries:[

V1

V2

]† [U11 U12

U21 U22

] [
W1

W2

]
=

[
D11 D12

D21 V †
2U22W2

]
.

(3) Observing the rest of the overall unitary (whose rows and
columns must be orthonormal), this forces the entries of
D12,D21 to satisfy the desired form: C2 + S2 = I.

(4) Finally, W2 7→ W ′
2 to correct D22 (free up to unitary).
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Part II: QSP and functional analysis
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After lifting, what’s next?

Given reduction to QSP, understanding possible unitaries follows
from understanding possible polynomials.

Usually want to control one SU(2) matrix element, leading to a
completion problem: for poly P(x), does there exist Q(x) s.t.[

P(x) i
√
1− x2Q(x)

i
√
1− x2Q∗(x) P∗(x)

]
∈ SU(2) ?

This is only part of the story, but simplifies choosing P(x); then

P(x) → P(x),Q(x) → Φ ∈ Rn+1.

For standard QSP, completion is equivalent to phase existence, and
relies on simple fact of positive trigonometric polynomials.
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Standard proof techniques in QSP

Completion arguments rely on Fejér-Riesz lemma [PS98], which
shows nonnegative trigonometric polynomials are squares. Proof
follows from simple root analysis/pairing.

P(x) ≥ 0 on [−1, 1] =⇒ P(x) = |B(x)|2 + (1− x2)|C(x)|2.

Showing equivalence to existence of Φ follows by induction, finding
φ s.t. U(Φ, x) = e iφσz U(Φ′, x) with |Φ′| = |Φ| − 1.

In infinite-length [DLNW22], multivariable [RC22], or nonlinear
Fourier analysis [ALM+24] setting, equivalent statements require
careful algebraic geometric analysis.
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Classical algorithms paired with QSP

Phase-finding methods for QSP; the ultimate goal is numerical
stability, where the number of bits of precision required goes as
log [1/ε] in desired fidelity.

(a) Initial, unstable, factorization-based, followed by iterative
phase read-off; good to n ≈ 100 [YLC14, LYC16]

(b) Laurent polynomial and Fourier methods; good to n ≈ 103,
though not using standard double precision. [Haa19]

(c) Optimization-based, iterative methods for restricted ansätze;
good approx n ≈ 107. [WDL21, DMWL21, AMT23, ALM+24]
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Numerical methods for QSP

Current leading methods for phase-finding are iterative, Newton’s
method-like, and rely on symmetrizing ansatz. [DMWL21]

‖Φ− Φ′‖∞ ≤ Cη−3‖f − f ′‖S , ‖f ‖∞ ≤ 1− η.

Proof of convergence analyzes QSP Jacobian, shown to be
Lipschitz continuous, and guaranteed not just for bounded `1-norm
targets, but bounded `∞ targets! [ALM+24]

Actively-developed numerical packages:

MATLB-based from Lin group:
QSPPACK: https://github.com/qsppack/QSPPACK,

and Python-based from Chuang group:
pyQSP: https://github.com/ichuang/pyqsp.

https://github.com/qsppack/QSPPACK
https://github.com/ichuang/pyqsp
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Part III: Applications and extensions
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Applications: QSP is all∗ you need

QSP and quantum singular value transformation (QSVT) compute
matrix functions for large∗ linear operators [GSLW19].

A =
∑

k
ξk |ψ̃k〉〈ψk | 7−→

QSVT

∑
k

P(ξk)|ψ̃k〉〈ψk | = P(A)

Search: Input Grover oracle, apply constant function
Low energy proj: Input Hamiltonian, apply bandpass function

Inversion: Input sparse linear sys, apply 1/x approximation
Simulation: Input Hamiltonian, apply trigonometric function …

Changing the polynomial changes the algorithm
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Guidelines and standard applications for QSVT

Question(s)
QSVT can do similar things to other quantum algorithms, so when
should we use it? What are its strong attributes?

Input promises: For low-space phase-estimation, QSVT incredibly
tuneable given promises on eigenvalue distribution. [Ral21]

State preparation: When approximating entire functions, e.g.,
exponential for Gibbs states, or trigonometric functions for
simulation, smoothness guarantees exponential convergence.
[GSLW19, GLM+22]

Deep, coherent circuits: QSVT has constant space overhead,
with success scaling as `∞ norm, as opposed to LCU, with
logarithmic space and `1-norm scaling.
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Recent generalizations and extensions

Restricting [WDL21] or expanding [MW23] circuit ansatz can
improve numerical properties and flexibility of achieved transform.

Multivariable variants [RC22, RC23, BWSS23, GLW24] can
compute joint functions and make bosonic simulation simpler.

QSVT can be modularly composed [RCC23, MF23, GLW24] in a
functional way, simplifying protocol design.

The theory of nonlinear Fourier analysis captures behavior of QSP
[AMT23, ALM+24], and furnishes convergence proofs for
phase-finding algorithms.
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E.g., QSP-like modules can be combined, if we can enforce
QSP-like behavior in special subspaces:

M N M

N
x1

x0

y1

y0

x1

x0

x2

y1

y0

y2

correction

interlink

x

y′

y

z

x′

M

N

Once these properties have been (approximately) established,
algorithm design can be usefully abstracted:

E

x0

x1

1

2
(x0 + x1)

A

A

A

A

A

A

A

A

B

C

D

x0

x1

1

2
(x0 + x1)E

x0

x1
E

E
x2

x0 + x1 + 2x2

4

(a)

(b)

(c)
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QSP/M-QSP: permitted block encoding functionals

Exposited in [RCC23, GLW24, MF23].

Exact Approx Query comp Norm scale

Q-power δ−1 log ε−1 ‖∗‖∞
Inversion δ−1 log ε−1 ‖∗‖∞

Composition † d1d2 log ε−1 ‖∗‖∞
Sum (d1 + d2) log ε−1 ‖∗‖∞

Product d1d2 log ε−1 ‖∗‖∞

In comparison, linear combination of unitaries (LCU) [CW12]
(1) depends on ‖∗‖1, (2) uses logarithmic not constant additional
space and (3) can exhibit quadratically worse query complexity.∗

†Here means exact for non-trivial strict subsets of possible polynomials of degree d1, d2.
Complexity and norm scaling are given for approximative methods for x ∈ [−1 + δ,−δ] ∪ [δ, 1 − δ].
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Work challenging input assumptions and ansatz form

Parallelized QSP [MRC+24] can trade-off circuit depth for width.

Randomized QSP [MR24] can lower circuit depth.

Classical feedback-based QSP [DAN24] for calibration tasks.

Higher-order tasks (rational powers, inversion, composition,
sums/products) are sensitive to resource model and target
(approximate, non-deterministic, etc.). [RCC23]

Looking ahead
Applying QSP/QSVT to different resource models requires suitably
weakening lifting argument, modifying completion argument, and
applying new approximation techniques. How do we flesh-out a
fuzzy, functional model of QSP/QSVT-like algorithms?
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On the optimality of QSP/QSVT

Lower bound for eig. transformation; Thm. 73 [GSLW19]
Let I ⊆ [−1, 1], a ≥ 1 and suppose U is a (1, a, 0)-block encoding of an
unknown Hermitian matrix H with the promise that the spectrum of H
lies within I. Let f : I → R, and suppose access to a quantum circuit V
that implements a (1, b, ε)-block encoding of f (H) using T applications
of U for all U satisfying the promise. Then for all x 6= y ∈ I ∩ [−1/2, 1/2]
we have that

T = Ω

[
|f (x)− f (y)| − 2ε

|x − y |

]
Lower bound for quantum matrix functions; from [MS24]
For any continuous function f (x) : [−1, 1] → [−1, 1], there is a 2-sparse
Hermitian matrix A with |A| ≤ 1 and two indices i , j such that Ω(d̃egε(f ))
queries to A are required in order to compute 〈i |f (A)|j〉 ± ε/4.


