Quantum singular value transformation: theory and practice

Zane Marius Rossi

The University of Tokyo

📏 An overview of QSP/QSVT literature †

Early work: focused on Hamiltonian simulation, composite pulses. [YLC14, LYC16, LC19, Haa19].

Broad and pedagogical works on QSVT: general reference. [GSLW19], [MRTC21].

For a CS reader: connected to numerical linear algebra. [TT23].

For a math reader: connected to nonlinear Fourier theory. [AMT23, ALM⁺24].

Generalizations, extensions, variants: recent progress in simplifying analysis and relaxing input assumptions. [MW23, RC22, WDL21, DLNW22, RCC23].

[†] Green text indicates a recommended entry-level paper.

Single-qubit alternating circuit taking $\Phi \in \mathbb{R}^{n+1}$ to $U_{\Phi}(x)$. Oracle access to structured unitary $W(x) = e^{i \cos^{-1}(x)\sigma_x}$.

User 'programs' $\Phi = \{\phi_0, \cdots, \phi_n\}$ to condition unitary on signal ${\bf x}$

 $|\psi\rangle$ — ...

Single-qubit alternating circuit taking $\Phi \in \mathbb{R}^{n+1}$ to $U_{\Phi}(x)$. Oracle access to structured unitary $W(x) = e^{i \cos^{-1}(x)\sigma_x}$.

User 'programs' $\Phi = \{\phi_0, \cdots, \phi_n\}$ to condition unitary on signal \mathbf{x}

Single-qubit alternating circuit taking $\Phi \in \mathbb{R}^{n+1}$ to $U_{\Phi}(\mathbf{x})$. Oracle access to structured unitary $W(x) = e^{i\cos^{-1}(x)\sigma_x}$.

User 'programs' $\Phi = \{\phi_0, \dots, \phi_n\}$ to condition unitary on signal x

zmr@mit.edu 3

Single-qubit alternating circuit taking $\Phi \in \mathbb{R}^{n+1}$ to $U_{\Phi}(x)$. Oracle access to structured unitary $W(x) = e^{i \cos^{-1}(x) \sigma_x}$.

User 'programs' $\Phi = \{\phi_0, \cdots, \phi_n\}$ to condition unitary on signal \mathbf{x}

¹[LYC16,LC17] zmr@mit.edu 3

Single-qubit alternating circuit taking $\Phi \in \mathbb{R}^{n+1}$ to $U_{\Phi}(x)$. Oracle access to structured unitary $W(x) = e^{i \cos^{-1}(x) \sigma_x}$.

User 'programs' $\Phi = \{\phi_0, \dots, \phi_n\}$ to condition unitary on signal \mathbf{x}

Single-qubit alternating circuit taking $\Phi \in \mathbb{R}^{n+1}$ to $U_{\Phi}(x)$. Oracle access to structured unitary $W(x) = e^{i \cos^{-1}(x)\sigma_x}$.

User 'programs' $\Phi = \{\phi_0, \cdots, \phi_n\}$ to condition unitary on signal \mathbf{x}

¹[LYC16,LC17]

zmr@mit.edu 3

Single-qubit alternating circuit taking $\Phi \in \mathbb{R}^{n+1}$ to $U_{\Phi}(x)$. Oracle access to structured unitary $W(x) = e^{i \cos^{-1}(x) \sigma_x}$.

User 'programs' $\Phi = \{\phi_0, \cdots, \phi_n\}$ to condition unitary on signal \mathbf{x}

¹[LYC16,LC17] zmr@mit.edu 3

Single-qubit alternating circuit taking $\Phi \in \mathbb{R}^{n+1}$ to $U_{\Phi}(x)$. Oracle access to structured unitary $W(x) = e^{i \cos^{-1}(x)\sigma_x}$.

User 'programs' $\Phi = \{\phi_0, \dots, \phi_n\}$ to condition unitary on signal x

Can go $P \mapsto \Phi$ and $\Phi \mapsto P$ efficiently; just like classical filter!

zmr@mit.edu 3

Single-qubit alternating circuit taking $\Phi \in \mathbb{R}^{n+1}$ to $U_{\Phi}(x)$. Oracle access to structured unitary $W(x) = e^{i \cos^{-1}(x) \sigma_x}$.

User 'programs' $\Phi = \{\phi_0, \dots, \phi_n\}$ to condition unitary on signal x

$$|\psi\rangle \underbrace{\phi_n \ W(x) \ \phi_{n-1} \ \phi_2 \ W(x) \ \phi_1 \ W(x) \ \phi_0}_{\phi_1 \ W(x) \ \phi_0} |\psi'\rangle$$

$$U(\Phi, H) = e^{i\phi_0 Z} \prod_{j=1}^k W(H) e^{i\phi_j Z} = \begin{bmatrix} P(H) & iQ(H)\sqrt{1-H^2} \\ iQ(H)^*\sqrt{1-H^2} & P(H)^* \end{bmatrix} \quad |0\rangle$$

$$|1\rangle$$

Can go $P \mapsto \Phi$ and $\Phi \mapsto P$ efficiently; just like classical filter!¹

Claim: can replace $\mathbf{z} \in \mathbb{R}$ with $\mathbf{H} = \mathbf{H}^{\dagger} \in \mathbb{C}^{m \times m}$; block $U_{\Phi}(\mathbf{H})$.

Part I: motivate and demystify QSVT by providing two 'lifting arguments' with commentary.

Part II: discuss reduction to QSP, and functional analytic tools that make this reduction worthwhile.

Part III: discuss common applications, guidelines, and recent extensions (multivar, randomized, functional programming, etc.).

Part I: Lifting arguments for QSVT

Block encoding; adapted from [TT23]

Let $A \in \mathbb{C}^{r \times c}$ and $\alpha, \varepsilon > 0$; a unitary $U \in \mathbb{C}^{d \times d}$ is an (α, ε) -block encoding of A if there exist $B_{L,1} \in \mathbb{C}^{d \times r}, B_{R,1} \in \mathbb{C}^{d \times c}$ with orthonormal columns s.t. $\|A - \alpha B_{L,1}^{\dagger} U B_{R,1}\|_{\text{op}} \leq \varepsilon$. We denote $B_{L,1}^{\dagger} B_{L,1} = \Pi_L$ and $B_{R,1}^{\dagger} B_{R,1} = \Pi_R$, orthogonal projectors.

Block encoding; adapted from [TT23]

Let $A \in \mathbb{C}^{r \times c}$ and $\alpha, \varepsilon > 0$; a unitary $U \in \mathbb{C}^{d \times d}$ is an (α, ε) -block encoding of A if there exist $B_{L,1} \in \mathbb{C}^{d \times r}, B_{R,1} \in \mathbb{C}^{d \times c}$ with orthonormal columns s.t. $\|A - \alpha B_{L,1}^{\dagger} U B_{R,1}\|_{op} \leq \varepsilon$. We denote $B_{L,1}^{\dagger} B_{L,1} = \Pi_L$ and $B_{R,1}^{\dagger} B_{R,1} = \Pi_R$, orthogonal projectors.

U, a block matrix, contains something ε -close to αA in its top left sub-block. Taking (1,0) block encoding, with $B_L=(B_{L,1},B_{L,2})$ and $B_R=(B_{R,1},B_{R,2})$ unitary completions of $B_{L,1},B_{R,1}$:

$$\mathcal{B}_L^\dagger U \mathcal{B}_R = \begin{bmatrix} A & * \\ * & * \end{bmatrix}, \quad \mathcal{B}_L^\dagger (\Pi_L U \Pi_R) \mathcal{B}_R = \begin{bmatrix} A & 0 \\ 0 & 0 \end{bmatrix}.$$

Block encoding; adapted from [TT23]

Let $A \in \mathbb{C}^{r \times c}$ and $\alpha, \varepsilon > 0$; a unitary $U \in \mathbb{C}^{d \times d}$ is an (α, ε) -block encoding of A if there exist $B_{L,1} \in \mathbb{C}^{d \times r}, B_{R,1} \in \mathbb{C}^{d \times c}$ with orthonormal columns s.t. $\|A - \alpha B_{L,1}^{\dagger} U B_{R,1}\|_{\text{op}} \leq \varepsilon$. We denote $B_{L,1}^{\dagger} B_{L,1} = \Pi_L$ and $B_{R,1}^{\dagger} B_{R,1} = \Pi_R$, orthogonal projectors.

U, a block matrix, contains something ε -close to αA in its top left sub-block. Taking (1,0) block encoding, with $B_L=(B_{L,1},B_{L,2})$ and $B_R=(B_{R,1},B_{R,2})$ unitary completions of $B_{L,1},B_{R,1}$:

$$B_L^{\dagger} U B_R = \begin{bmatrix} A & * \\ * & * \end{bmatrix}, \quad B_L^{\dagger} (\Pi_L U \Pi_R) B_R = \begin{bmatrix} A & 0 \\ 0 & 0 \end{bmatrix}.$$

An alternative definition is sometimes given, as in Def. 43 of [GSLW19], where a (α, a, ε) -block encoding of A satisfies

$$||A - \alpha(\langle 0|^{\otimes a} \otimes I)U(|0\rangle^{\otimes a} \otimes I)|| \leq \varepsilon,$$

where A is an s-qubit operator, and U is an (s + a) qubit unitary.

QSVT unitary; Def. 15 [GSLW19]

Let $\Phi = \{\phi_j\}_{j \in [n]} \in \mathbb{R}^n$; the QSVT protocol associated with Φ and a 2×2 block unitary U has circuit form (taking n even):

$$U_{\Phi} \equiv \prod_{i \in [n/2]} e^{i\phi_{2j-1}(2\Pi_R-I)} U^{\dagger} e^{i\phi_{2j}(2\Pi_L-I)} U.$$

QSVT unitary; Def. 15 [GSLW19]

Let $\Phi = \{\phi_j\}_{j \in [n]} \in \mathbb{R}^n$; the QSVT protocol associated with Φ and a 2×2 block unitary U has circuit form (taking n even):

$$U_{\Phi} \equiv \prod_{j \in [n/2]} e^{i\phi_{2j-1}(2\Pi_R-I)} U^{\dagger} e^{i\phi_{2j}(2\Pi_L-I)} U.$$

QSVT main theorem (informal)

Let $U \in \mathbb{C}^{d \times d}$ a block encoding of A, and let $\Phi \in \mathbb{R}^n$ such that its QSP protocol achieves $P(x) \in \mathbb{C}[x]$. Then (taking n even)

$$\Pi_R U_{\Phi} \Pi_R = \begin{bmatrix} P^{(SV)}(A) & 0 \\ 0 & 0 \end{bmatrix}.$$

In other words, within the block, he polynomial is the same as would have been applied by the QSP protocol for Φ .

$$\prod_{k=1}^n \left\{ \begin{array}{c} \\ \\ \\ \\ \end{array} \right. \left. \begin{array}{c} \\ \\ \end{array} \right. \left. \begin{array}{c}$$

Note when image of projector is a single-qubit pure state, a trick allows for the direct recovery of simpler qubitization method.

The trick to making QSP useful

The theory of QSP is basically 'non-quantum'; good for understanding, but how can we match quantum information processing tasks to its simple form?

The trick to making QSP useful

The theory of QSP is basically 'non-quantum'; good for understanding, but how can we match quantum information processing tasks to its simple form?

We'll rely on a lifting argument, showing that interleaving large unitaries induces simple action in invariant subspaces.

The trick to making QSP useful

The theory of QSP is basically 'non-quantum'; good for understanding, but how can we match quantum information processing tasks to its simple form?

We'll rely on a lifting argument, showing that interleaving large unitaries induces simple action in invariant subspaces.

This idea is not new, and appears in Grover search and QMA amplification [Gro05, Reg06]; the core observation has been known since 19^{th} century. [Jor75]

$$\frac{1}{\sqrt{N}}|m\rangle + \sqrt{\frac{N-1}{N}}|m^{\perp}\rangle \ \mapsto \ -\frac{1}{\sqrt{N}}|m\rangle + \sqrt{\frac{N-1}{N}}|m^{\perp}\rangle.$$

We can explicitly construct invariant subspaces. Let Π_R , Π_L , U, A as before, and k the largest index for which $\xi_k = 1$, where ξ_k is the k-th SV of A ordered by decreasing size, and $r = \operatorname{rank}(A)$.

We can explicitly construct invariant subspaces. Let Π_R , Π_L , U, A as before, and k the largest index for which $\xi_k = 1$, where ξ_k is the k-th SV of A ordered by decreasing size, and r = rank(A).

Recall:
$$A = \sum_{i} \xi_{i} |\tilde{\psi}_{i}\rangle \langle \psi_{i}|$$
.

$$\mathcal{H}_i = \operatorname{span}(|\psi_i\rangle), \qquad \qquad \tilde{\mathcal{H}}_i = \operatorname{span}(|\tilde{\psi}_i\rangle), \qquad \qquad i \in [k],$$
 (1)

$$\mathcal{H}_i = \operatorname{span}(|\psi_i\rangle, |\psi_i^{\perp}\rangle), \quad \tilde{\mathcal{H}}_i = \operatorname{span}(|\tilde{\psi}_i\rangle, |\tilde{\psi}_i^{\perp}\rangle), \quad i \in [r] \setminus [k], \quad (2)$$

$$\mathcal{H}_{i}^{R} = \operatorname{span}(|\psi_{i}\rangle), \qquad \quad \tilde{\mathcal{H}}_{i}^{R} = \operatorname{span}(U|\psi_{i}\rangle), \qquad \quad i \in [d]\backslash[r], \quad (3)$$

$$\mathcal{H}_{i}^{L} = \operatorname{span}(U^{\dagger}|\tilde{\psi}_{i}\rangle), \qquad \tilde{\mathcal{H}}_{i}^{L} = \operatorname{span}(|\tilde{\psi}_{i}\rangle), \qquad i \in [\tilde{d}] \setminus [r].$$
 (4)

We can explicitly construct invariant subspaces. Let Π_R , Π_L , U, A as before, and k the largest index for which $\xi_k=1$, where ξ_k is the k-th SV of A ordered by decreasing size, and $r=\operatorname{rank}(A)$. \raiseta Recall: $A=\sum_i \xi_i |\bar{\psi}_i\rangle \langle \psi_i|$.

$$\mathcal{H}_i = \operatorname{span}(|\psi_i\rangle), \qquad \qquad \tilde{\mathcal{H}}_i = \operatorname{span}(|\tilde{\psi}_i\rangle), \qquad \qquad i \in [k], \qquad (1)$$

$$\mathcal{H}_i = \operatorname{span}(|\psi_i\rangle, |\psi_i^{\perp}\rangle), \quad \tilde{\mathcal{H}}_i = \operatorname{span}(|\tilde{\psi}_i\rangle, |\tilde{\psi}_i^{\perp}\rangle), \quad i \in [r] \setminus [k], \quad (2)$$

$$\mathcal{H}_{i}^{R} = \operatorname{span}(|\psi_{i}\rangle), \qquad \quad \tilde{\mathcal{H}}_{i}^{R} = \operatorname{span}(U|\psi_{i}\rangle), \qquad \quad i \in [d]\backslash[r], \quad (3)$$

$$\mathcal{H}_{i}^{L}=\operatorname{span}(U^{\dagger}|\tilde{\psi}_{i}\rangle), \qquad \tilde{\mathcal{H}}_{i}^{L}=\operatorname{span}(|\tilde{\psi}_{i}\rangle), \qquad \quad i\in [\tilde{d}]\backslash [r]. \ \ \textbf{(4)}$$

Here $d=\operatorname{rank}(\Pi_R)$, $\tilde{d}=\operatorname{rank}(\Pi_L)$, and $|\psi_i\rangle$ and $|\tilde{\psi}_i\rangle$ are the right and left SVecs of A; i.e., orthonormal bases for $(img)(\Pi_R)$ and $\operatorname{img}(\Pi_L)$. The (\bot) superscript follows:

$$|\psi_{i}^{\perp}\rangle \equiv (\sqrt{1-\xi_{i}^{2}})^{-1}(I-\Pi_{R})U^{\dagger}|\tilde{\psi}_{i}\rangle, \tag{5}$$

$$|\tilde{\psi}_i^{\perp}\rangle \equiv (\sqrt{1-\xi_i^2})^{-1}(I-\Pi_L)U|\psi_i\rangle. \tag{6}$$

Qubitization shows that \mathcal{H}_i , \mathcal{H}_i^R , and \mathcal{H}_i^L are pairwise orthogonal, which we summarize and motivate:

Qubitization shows that \mathcal{H}_i , \mathcal{H}_i^R , and \mathcal{H}_i^L are pairwise orthogonal, which we summarize and motivate:

$$\langle \psi_i | \psi_j \rangle = \delta_{ij}, \quad \mathcal{H}_i \perp \mathcal{H}_j,$$
 (7)

$$\langle \tilde{\psi}_i | \tilde{\psi}_j \rangle = \delta_{ij}, \quad \tilde{\mathcal{H}}_i \perp \tilde{\mathcal{H}}_j,$$
 (8)

$$\langle \psi_i^{\perp} | \psi_i^{\perp} \rangle = \langle \tilde{\psi}_i^{\perp} | \tilde{\psi}_i^{\perp} \rangle = \delta_{ij}, \quad (\mathcal{H}_i / \mathcal{H}_i)^{\perp} \perp (\tilde{\mathcal{H}}_j / \tilde{\mathcal{H}}_j)^{\perp}, \quad (9)$$

$$\langle \psi_i | \psi_j^{\perp} \rangle = \langle \tilde{\psi}_i | \tilde{\psi}_j^{\perp} \rangle = 0, \quad */* \perp */*,$$
 (10)

$$\langle \psi_i | U^\dagger | \tilde{\psi}_j \rangle = 0, \quad U^\dagger | \tilde{\psi}_j \rangle \in \mathcal{H}_j^L,$$
 (11)

$$\langle \psi_i^{\perp} | U^{\dagger} | \tilde{\psi}_j \rangle = 0, \quad U^{\dagger} | \tilde{\psi}_j \rangle \in \mathcal{H}_j^L.$$
 (12)

Qubitization shows that \mathcal{H}_i , \mathcal{H}_i^R , and \mathcal{H}_i^L are pairwise orthogonal, which we summarize and motivate:

$$\langle \psi_i | \psi_j \rangle = \delta_{ij}, \quad \mathcal{H}_i \perp \mathcal{H}_j,$$
 (7)

$$\langle \tilde{\psi}_i | \tilde{\psi}_j \rangle = \delta_{ij}, \quad \tilde{\mathcal{H}}_i \perp \tilde{\mathcal{H}}_j,$$
 (8)

$$\langle \psi_i^{\perp} | \psi_j^{\perp} \rangle = \langle \tilde{\psi}_i^{\perp} | \tilde{\psi}_j^{\perp} \rangle = \delta_{ij}, \quad (\mathcal{H}_i / \mathcal{H}_i)^{\perp} \perp (\tilde{\mathcal{H}}_j / \tilde{\mathcal{H}}_j)^{\perp}, \quad (9)$$

$$\langle \psi_i | \psi_j^{\perp} \rangle = \langle \tilde{\psi}_i | \tilde{\psi}_j^{\perp} \rangle = 0, \quad */* \perp */*,$$
 (10)

$$\langle \psi_i | U^{\dagger} | \tilde{\psi}_j \rangle = 0, \quad U^{\dagger} | \tilde{\psi}_j \rangle \in \mathcal{H}_j^L,$$
 (11)

$$\langle \psi_i^{\perp} | U^{\dagger} | \tilde{\psi}_j \rangle = 0, \quad U^{\dagger} | \tilde{\psi}_j \rangle \in \mathcal{H}_j^L.$$
 (12)

The first three follow from the orthogonality of singular vectors; note that $\langle \tilde{\psi}_i | U \Pi_R U^\dagger | \psi_j \rangle$ can be replaced by $\langle \tilde{\psi}_i | A A^\dagger | \psi_j \rangle$ freely. The action of U is to take all $|\psi_i\rangle$ to their corresponding $|\tilde{\psi}_j\rangle$ vectors, and Π_R, Π_L project onto the span of the tilde and non-tilde orthogonal bases. The final three identities follow from the action of the projectors on vectors not in their images.

In *qubitization*, large unitary breaks into direct sum of qubit-like maps. Brackets indicate map from *superscript to the subscript*:

$$U = \bigoplus_{i \in [k]} \begin{bmatrix} \xi_i \end{bmatrix}_{\tilde{\mathcal{H}}_i}^{\mathcal{H}_i} \oplus \bigoplus_{i \in [r] \setminus [k]} \begin{bmatrix} \xi_i & \sqrt{1 - \xi_i^2} \\ \sqrt{1 - \xi_i^2} & \xi_i \end{bmatrix}_{\tilde{\mathcal{H}}_i}^{\mathcal{H}_i} \oplus [1]_{\tilde{\mathcal{H}}_i^R \oplus \tilde{\mathcal{H}}_i^L}^{\mathcal{H}_i^R \oplus \mathcal{H}_i^L} \oplus [*]_{\tilde{\mathcal{H}}^\perp}^{\mathcal{H}^\perp}, \tag{13}$$

$$e^{i\phi(2\Pi_{R}-I)} = \bigoplus_{i \in [k]} [e^{i\phi}]_{\mathcal{H}_{i}}^{\mathcal{H}_{i}} \oplus \bigoplus_{i \in [r] \setminus [k]} \begin{bmatrix} e^{i\phi} & 0 \\ 0 & e^{-i\phi} \end{bmatrix}_{\mathcal{H}_{i}}^{\mathcal{H}_{i}} \oplus [e^{i\phi}]_{\mathcal{H}_{i}}^{\mathcal{H}_{i}^{R}} \oplus [e^{-i\phi}]_{\mathcal{H}_{i}^{L}}^{\mathcal{H}_{i}^{L}} \oplus [*]_{\mathcal{H}^{\perp}}^{\mathcal{H}^{\perp}}, \quad (14)$$

$$e^{i\phi(2\Pi_{L}-I)} = \bigoplus_{i \in [k]} [e^{i\phi}]_{\tilde{\mathcal{H}}_{i}}^{\tilde{\mathcal{H}}_{i}} \oplus \bigoplus_{i \in [r] \backslash [k]} \begin{bmatrix} e^{i\phi} & 0 \\ 0 & e^{-i\phi} \end{bmatrix}_{\tilde{\mathcal{H}}_{i}}^{\tilde{\mathcal{H}}_{i}} \oplus [e^{-i\phi}]_{\tilde{\mathcal{H}}_{i}}^{\tilde{\mathcal{H}}_{i}^{R}} \oplus [e^{i\phi}]_{\tilde{\mathcal{H}}_{i}^{L}}^{\tilde{\mathcal{H}}_{i}^{L}} \oplus [*]_{\tilde{\mathcal{H}}^{L}}^{\tilde{\mathcal{H}}^{L}}, \quad (15)$$

In *qubitization*, large unitary breaks into direct sum of qubit-like maps. Brackets indicate map from *superscript to the subscript*:

$$U = \bigoplus_{i \in [k]} \begin{bmatrix} \xi_i \end{bmatrix}_{\tilde{\mathcal{H}}_i}^{\mathcal{H}_i} \oplus \bigoplus_{i \in [r] \setminus [k]} \begin{bmatrix} \xi_i & \sqrt{1 - \xi_i^2} \\ \sqrt{1 - \xi_i^2} & \xi_i \end{bmatrix}_{\tilde{\mathcal{H}}_i}^{\mathcal{H}_i} \oplus [1]_{\tilde{\mathcal{H}}_i^R \oplus \tilde{\mathcal{H}}_i^L}^{\mathcal{H}_i^R \oplus \mathcal{H}_i^L} \oplus [*]_{\tilde{\mathcal{H}}^\perp}^{\mathcal{H}^\perp}, \tag{13}$$

$$e^{i\phi(2\Pi_{R}-I)} = \bigoplus_{i \in [k]} [e^{i\phi}]_{\mathcal{H}_{i}}^{\mathcal{H}_{i}} \oplus \bigoplus_{i \in [r] \setminus [k]} \begin{bmatrix} e^{i\phi} & 0 \\ 0 & e^{-i\phi} \end{bmatrix}_{\mathcal{H}_{i}}^{\mathcal{H}_{i}} \oplus [e^{i\phi}]_{\mathcal{H}_{i}}^{\mathcal{H}_{i}^{R}} \oplus [e^{-i\phi}]_{\mathcal{H}_{i}^{L}}^{\mathcal{H}_{i}^{L}} \oplus [*]_{\mathcal{H}^{\perp}}^{\mathcal{H}^{\perp}}, \quad (14)$$

$$e^{i\phi(2\Pi_{L}-I)} = \bigoplus_{i \in [k]} [e^{i\phi}]_{\tilde{\mathcal{H}}_{i}}^{\tilde{\mathcal{H}}_{i}} \oplus \bigoplus_{i \in [r] \setminus [k]} \begin{bmatrix} e^{i\phi} & 0 \\ 0 & e^{-i\phi} \end{bmatrix}_{\tilde{\mathcal{H}}_{i}}^{\tilde{\mathcal{H}}_{i}} \oplus [e^{-i\phi}]_{\tilde{\mathcal{H}}_{i}}^{\tilde{\mathcal{H}}_{i}^{R}} \oplus [e^{i\phi}]_{\tilde{\mathcal{H}}_{i}^{L}}^{\tilde{\mathcal{H}}_{i}^{L}} \oplus [*]_{\tilde{\mathcal{H}}^{L}}^{\tilde{\mathcal{H}}^{L}}, \quad (15)$$

This can be explicitly verified from the known relations among Π_L , Π_R , U, A. Important subspaces are non-trivial \mathcal{H}_i , $\tilde{\mathcal{H}}_i$.

In some sense, nothing besides U(2) operations could have happened in these subspaces! And this imposes constraints!

Alternatively, the *cosine-sine decomposition* arises for unitary U with 2×2 block form. It turns out one can produce *simultaneous* SVDs satisfying $U_{ij} = V_i D_{ij} W_j^{\dagger}$:

Alternatively, the **cosine-sine decomposition** arises for unitary U with 2×2 block form. It turns out one can produce *simultaneous* SVDs satisfying $U_{ij} = V_i D_{ij} W_i^{\dagger}$:

Cosine-sine decomposition (CSD) statement

Let $U \in \mathbb{C}^{d \times d}$ a unitary matrix partitioned into blocks of size $\{r_1, r_2\} \times \{c_1, c_2\}$:

$$egin{bmatrix} U_{11} & U_{12} \ U_{21} & U_{22} \end{bmatrix}, \ \ ext{where} \ \ U_{ij} \in \mathbb{C}^{r_i imes c_j},$$

Then there exist unitaries $V_i \in \mathbb{C}^{r_i \times r_i}$ and $W_i \in \mathbb{C}^{c_j \times c_j}$ such that

$$\begin{bmatrix} U_{11} & U_{12} \\ U_{21} & U_{22} \end{bmatrix} = \begin{bmatrix} V_1 \\ V_2 \end{bmatrix} \begin{bmatrix} D_{11} & D_{12} \\ D_{21} & D_{22} \end{bmatrix} \begin{bmatrix} W_1 \\ W_2 \end{bmatrix}^{\dagger},$$

where blanks are the zero matrix, and each D_{ij} is diagonal in $\mathbb{C}^{r_i \times c_j}$, possibly padded with zeros.

Specifically, we can write D in the form:

$$\begin{bmatrix} D_{11} & D_{12} \\ D_{21} & D_{22} \end{bmatrix} = \begin{bmatrix} 0 & & I & & \\ & C & & S & \\ & & I & & 0 \\ \hline I & & & 0 & \\ & & & & -C & \\ & & & & -C & \\ & & & & & -C \end{bmatrix},$$

$$= \underbrace{\begin{bmatrix} 0 & I \\ I & 0 \end{bmatrix}}_{\chi_0 \to \chi_0} \oplus \underbrace{\begin{bmatrix} C & S \\ S & -C \end{bmatrix}}_{\chi_C \to \chi_C} \oplus \underbrace{\begin{bmatrix} I & 0 \\ 0 & -I \end{bmatrix}}_{\chi_1 \to \chi_1}.$$

where C, S, I are square diagonal matrices, and C, S have entries in the interval (0,1) on their diagonal, and $C^2 + S^2 = I$.

💡 le

Idea of the proof of CSD

- (1) Start with the SVD of $U_{11} = V_1 D_{11} W_1^{\dagger}$, noting SVs in [0,1].
- (2) Compute QR decompositions of $U_{21}W_1$ and $U_{12}^{\dagger}V_1$, which give V_2 , W_2 to make these operators upper-diagonal with nonnegative diagonal entries:

$$\begin{bmatrix} V_1 & \\ & V_2 \end{bmatrix}^{\dagger} \begin{bmatrix} U_{11} & U_{12} \\ U_{21} & U_{22} \end{bmatrix} \begin{bmatrix} W_1 & \\ & W_2 \end{bmatrix} = \begin{bmatrix} D_{11} & D_{12} \\ D_{21} & V_2^{\dagger} U_{22} W_2 \end{bmatrix}.$$

- (3) Observing the rest of the overall unitary (whose rows and columns must be orthonormal), this forces the entries of D_{12} , D_{21} to satisfy the desired form: $C^2 + S^2 = I$.
- (4) Finally, $W_2 \mapsto W_2'$ to correct D_{22} (free up to unitary).

Part II: QSP and functional analysis

After lifting, what's next?

Given reduction to QSP, understanding possible unitaries follows from understanding possible polynomials.

Usually want to control one SU(2) matrix element, leading to a *completion problem*: for poly P(x), does there exist Q(x) s.t.

$$\begin{bmatrix} P(x) & i\sqrt{1-x^2}Q(x) \\ i\sqrt{1-x^2}Q^*(x) & P^*(x) \end{bmatrix} \in SU(2) ?$$

After lifting, what's next?

Given reduction to QSP, understanding possible unitaries follows from understanding possible polynomials.

Usually want to control one SU(2) matrix element, leading to a *completion problem*: for poly P(x), does there exist Q(x) s.t.

$$\begin{bmatrix} P(x) & i\sqrt{1-x^2}Q(x) \\ i\sqrt{1-x^2}Q^*(x) & P^*(x) \end{bmatrix} \in SU(2) ?$$

This is only part of the story, but simplifies choosing P(x); then

$$P(x) \to P(x), Q(x) \to \Phi \in \mathbb{R}^{n+1}.$$

For standard QSP, completion is equivalent to phase existence, and relies on simple fact of positive trigonometric polynomials.

Completion arguments rely on Fejér-Riesz lemma [PS98], which shows nonnegative trigonometric polynomials are squares. Proof follows from simple root analysis/pairing.

$$P(x) \ge 0$$
 on $[-1,1] \implies P(x) = |B(x)|^2 + (1-x^2)|C(x)|^2$.

Showing equivalence to existence of Φ follows by induction, finding ϕ s.t. $U(\Phi,x)=e^{i\phi\sigma_z}U(\Phi',x)$ with $|\Phi'|=|\Phi|-1$.

Standard proof techniques in QSP

Completion arguments rely on Fejér-Riesz lemma [PS98], which shows nonnegative trigonometric polynomials are squares. Proof follows from simple root analysis/pairing.

$$P(x) \ge 0$$
 on $[-1,1] \implies P(x) = |B(x)|^2 + (1-x^2)|C(x)|^2$.

Showing equivalence to existence of Φ follows by induction, finding ϕ s.t. $U(\Phi, x) = e^{i\phi\sigma_z}U(\Phi', x)$ with $|\Phi'| = |\Phi| - 1$.

⚠ In infinite-length [DLNW22], multivariable [RC22], or nonlinear Fourier analysis [ALM⁺24] setting, equivalent statements require careful algebraic geometric analysis.

Classical algorithms paired with QSP

Phase-finding methods for QSP; the ultimate goal is numerical stability, where the number of bits of precision required goes as $\log{[1/\varepsilon]}$ in desired fidelity.

- (a) Initial, unstable, factorization-based, followed by iterative phase read-off; good to $n \approx 100$ [YLC14, LYC16]
- (b) Laurent polynomial and Fourier methods; good to $n \approx 10^3$, though not using standard double precision. [Haa19]
- (c) Optimization-based, iterative methods for restricted ansätze; good approx $n\approx 10^7$. [WDL21, DMWL21, AMT23, ALM+24]

X Numerical methods for QSP

Current leading methods for phase-finding are iterative, Newton's method-like, and rely on symmetrizing ansatz. [DMWL21]

$$\|\Phi - \Phi'\|_{\infty} \le C\eta^{-3} \|f - f'\|_{S}, \quad \|f\|_{\infty} \le 1 - \eta.$$

Proof of convergence analyzes QSP Jacobian, shown to be Lipschitz continuous, and guaranteed not just for bounded ℓ_1 -norm targets, but bounded ℓ_∞ targets! [ALM+24]

X Numerical methods for QSP

Current leading methods for phase-finding are iterative, Newton's method-like, and rely on symmetrizing ansatz. [DMWL21]

$$\|\Phi - \Phi'\|_{\infty} \le C\eta^{-3}\|f - f'\|_{\mathcal{S}}, \quad \|f\|_{\infty} \le 1 - \eta.$$

Proof of convergence analyzes QSP Jacobian, shown to be Lipschitz continuous, and guaranteed not just for bounded ℓ_1 -norm targets, but bounded ℓ_∞ targets! [ALM+24]

Actively-developed numerical packages:

MATLB-based from Lin group:

QSPPACK: https://github.com/qsppack/QSPPACK, and Python-based from Chuang group:

pyQSP: https://github.com/ichuang/pyqsp.

Part III: Applications and extensions

Applications: QSP is all* you need

Applications: QSP is all* you need

QSP and quantum singular value transformation (QSVT) compute *matrix functions* for large* linear operators [GSLW19].

$$A = \sum_{k} \xi_{k} |\tilde{\psi}_{k}\rangle \langle \psi_{k}| \underset{\mathsf{QSVT}}{\longmapsto} \sum_{k} P(\xi_{k}) |\tilde{\psi}_{k}\rangle \langle \psi_{k}| = P(A)$$

■ Applications: QSP is all* you need

QSP and quantum singular value transformation (QSVT) compute matrix functions for large* linear operators [GSLW19].

Search: Input Grover oracle, apply constant function

Low energy proj: Input Hamiltonian, apply bandpass function

Inversion: Input sparse linear sys, apply 1/x approximation

Simulation: Input Hamiltonian, apply trigonometric function ...

QSP and quantum singular value transformation (QSVT) compute matrix functions for large* linear operators [GSLW19].

$$\mathbf{A} = \sum_{k} \xi_{k} |\tilde{\psi}_{k}\rangle \langle \psi_{k}| \underset{\mathsf{QSVT}}{\longmapsto} \sum_{k} P(\xi_{k}) |\tilde{\psi}_{k}\rangle \langle \psi_{k}| = P(\mathbf{A})$$

Search: Input Grover oracle, apply constant function

Low energy proj: Input Hamiltonian, apply bandpass function

Inversion: Input sparse linear sys, apply 1/x approximation

Simulation: Input Hamiltonian, apply trigonometric function ...

Changing the polynomial changes the algorithm

Guidelines and standard applications for QSVT

Question(s)

QSVT can do similar things to other quantum algorithms, so when should we use it? What are its strong attributes?

Guidelines and standard applications for QSVT

Question(s)

QSVT can do similar things to other quantum algorithms, so when should we use it? What are its strong attributes?

Input promises: For low-space phase-estimation, QSVT incredibly tuneable given promises on eigenvalue distribution. [Ral21]

State preparation: When approximating entire functions, e.g., exponential for Gibbs states, or trigonometric functions for simulation, smoothness guarantees exponential convergence. [GSLW19, GLM⁺22]

Deep, coherent circuits: QSVT has constant space overhead, with success scaling as ℓ_{∞} norm, as opposed to LCU, with logarithmic space and ℓ_1 -norm scaling.

** Recent generalizations and extensions

Restricting [WDL21] or expanding [MW23] circuit ansatz can improve numerical properties and flexibility of achieved transform.

Multivariable variants [RC22, RC23, BWSS23, GLW24] can compute joint functions and make bosonic simulation simpler.

QSVT can be modularly composed [RCC23, MF23, GLW24] in a functional way, simplifying protocol design.

The theory of nonlinear Fourier analysis captures behavior of QSP [AMT23, ALM⁺24], and furnishes convergence proofs for phase-finding algorithms.

E.g., QSP-like modules can be combined, **if we can enforce** QSP-like behavior in special subspaces:

E.g., QSP-like modules can be combined, **if we can enforce** QSP-like behavior in special subspaces:

Once these properties have been (approximately) established, algorithm design can be usefully abstracted:

S QSP/M-QSP: permitted block encoding functionals

Exposited in [RCC23, GLW24, MF23].

	Exact	Approx	Query comp	Norm scale
\mathbb{Q} -power		V	$\delta^{-1}\log \varepsilon^{-1}$	$\ *\ _{\infty}$
Inversion	X	V	$\delta^{-1}\log\varepsilon^{-1}$	$\ *\ _{\infty}$
Composition	<u>^</u> †	V	$ extstyle d_1 extstyle d_2\logarepsilon^{-1}$	$\ *\ _{\infty}$
Sum	À	V	$(d_1+d_2)\log \varepsilon^{-1}$	$\ *\ _{\infty}$
Product	1	V	$d_1d_2\logarepsilon^{-1}$	$\ *\ _{\infty}$

[†] Here \bigwedge means exact for non-trivial strict subsets of possible polynomials of degree d_1, d_2 . Complexity and norm scaling are given for approximative methods for $x \in [-1+\delta, -\delta] \cup [\delta, 1-\delta]$.

SP/M-QSP: permitted block encoding functionals

Exposited in [RCC23, GLW24, MF23].

	Exact	Approx	Query comp	Norm scale
\mathbb{Q} -power		V	$\delta^{-1}\log \varepsilon^{-1}$	$\ *\ _{\infty}$
Inversion	X	V	$\delta^{-1}\log\varepsilon^{-1}$	$\ *\ _{\infty}$
Composition	<u>^</u> †	V	$ extstyle d_1 extstyle d_2 \log arepsilon^{-1}$	$\ *\ _{\infty}$
Sum	1	V	$(d_1+d_2)\log \varepsilon^{-1}$	$\ *\ _{\infty}$
Product	1	V	$d_1d_2\logarepsilon^{-1}$	$\ *\ _{\infty}$

In comparison, linear combination of unitaries (LCU) [CW12] (1) depends on $||*||_1$, (2) uses logarithmic not constant additional space and (3) can exhibit quadratically worse query complexity.*

[†]Here \bigwedge means exact for non-trivial strict subsets of possible polynomials of degree d_1,d_2 . Complexity and norm scaling are given for approximative methods for $x \in [-1+\delta,-\delta] \cup [\delta,1-\delta]$.

Work challenging input assumptions and ansatz form

Parallelized QSP [MRC⁺24] can trade-off circuit depth for width.

Randomized QSP [MR24] can lower circuit depth.

Classical feedback-based QSP [DAN24] for calibration tasks.

Higher-order tasks (rational powers, inversion, composition, sums/products) are sensitive to resource model and target (approximate, non-deterministic, etc.). [RCC23]

#

Work challenging input assumptions and ansatz form

Parallelized QSP [MRC⁺24] can trade-off circuit depth for width.

Randomized QSP [MR24] can lower circuit depth.

Classical feedback-based QSP [DAN24] for calibration tasks.

Higher-order tasks (rational powers, inversion, composition, sums/products) are sensitive to resource model and target (approximate, non-deterministic, etc.). [RCC23]

Looking ahead

Applying QSP/QSVT to different resource models requires suitably weakening lifting argument, modifying completion argument, and applying new approximation techniques. *How do we flesh-out a fuzzy, functional model of QSP/QSVT-like algorithms?*

[ALM⁺24] Michel Alexis, Lin Lin, Gevorg Mnatsakanyan, Christoph Thiele, and Jiasu Wang. Infinite quantum signal processing for arbitrary szegő functions, 2024. [AMT23] Michel Alexis, Gevorg Mnatsakanyan, and Christoph Thiele. Quantum signal processing and nonlinear fourier analysis, 2023. Yonah Borns-Weil, Tahsin Saffat, and Zachary Stier, A quantum algorithm for functions of multiple commuting Hermitian matrices, arXiv preprint, arXiv:2302.11139, 2023. Andrew M. Childs and Nathan Wiebe. Hamiltonian simulation using linear combinations of unitary operations. Quantum Info. Comput., 12(11-12):901-924, Nov 2012. [DAN24] Yulong Dong, Dong An, and Murphy Yuezhen Niu. Feedforward quantum singular value transformation, 2024. [DLNW22] Yulong Dong, Lin Lin, Hongkang Ni, and Jiasu Wang. Infinite quantum signal processing. arXiv preprint, arXiv:2209.10162, 2022. [DMWL21] Yulong Dong, Xiang Meng, K. Birgitta Whaley, and Lin Lin. Efficient phase-factor evaluation in quantum signal processing, Phys. Rev. A, 103(4), Apr 2021. [GLM⁺22] András Gilvén, Seth Lloyd, Iman Maryian, Yihui Quek, and Mark M Wilde, Quantum algorithm for Petz recovery channels and pretty good measurements. Phys. Rev. Lett., 128(22):220502, 2022. [GLW24] Niladri Gomes, Hokiat Lim, and Nathan Wiebe. Multivariable qsp and bosonic quantum simulation using iterated quantum signal processing, 2024. Lov K Grover, Fixed-point quantum search, Phys. Rev. Lett., 95(15):150501, 2005. [GSLW19] András Gilvén, Yuan Su, Guang Hao Low, and Nathan Wiebe, Quantum singular value transformation and beyond: exponential improvements for quantum matrix arithmetics. Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, 2019. [Haa19] Jeongwan Haah. Product decomposition of periodic functions in quantum signal processing. Quantum, 3:190, Oct 2019. Camille Jordan. Essai sur la géométrie à n dimensions. Bulletin de la Société mathématique de France, [Jor75] 3:103-174, 1875.

G. H. Low and I. L. Chuang, Hamiltonian simulation by gubitization, Quantum, 3:163, Jul 2019.

[LC19]

- [LYC16] G. H. Low, T. J. Yoder, and I. L. Chuang. Methodology of resonant equiangular composite quantum gates. Phys. Rev. X, 6:041067, 2016.
- [MF23] Kaoru Mizuta and Keisuke Fujii. Recursive quantum eigenvalue/singular-value transformation: Analytic construction of matrix sign function by Newton iteration. arXiv preprint, arXiv:2304.13330, 2023.
- [MR24] John M. Martyn and Patrick Rall. Halving the cost of quantum algorithms with randomization, 2024.
- [MRC⁺24] John M. Martyn, Zane M. Rossi, Kevin Z. Cheng, Yuan Liu, and Isaac L. Chuang. Parallel quantum signal processing via polynomial factorization, 2024.
- [MRTC21] John M. Martyn, Zane M. Rossi, Andrew K. Tan, and Isaac L. Chuang. Grand unification of quantum algorithms. PRX Quantum, 2(4), dec 2021.
- [MW23] Danial Motlagh and Nathan Wiebe. Generalized quantum signal processing. arXiv preprint, arXiv:2308.01501, 2023.
- [PS98] George Polya and Gabor Szegö. Problems and Theorems in Analysis II. Springer, Berlin, 1998.
- [Ral21] Patrick Rall. Faster coherent quantum algorithms for phase, energy, and amplitude estimation.

 Quantum. 5:566. Oct 2021.
- [RC22] Zane M. Rossi and Isaac L. Chuang. Multivariable quantum signal processing (M-QSP): prophecies of the two-headed oracle. Quantum, 6:811, Sep 2022.
- [RC23] Zane M. Rossi and Isaac L. Chuang. Semantic embedding for quantum algorithms. arXiv preprint, arXiv:2304.14392. 2023.
- [RCC23] Zane M. Rossi, Jack L. Ceroni, and Isaac L. Chuang. Modular quantum signal processing in many variables. arXiv preprint arXiv:2309.16665, 2023.
- [Reg06] Oded Regev. Fast amplification of QMA (lecture notes), 2006. https://cims.nyu.edu/-regev/teaching/quantum_fall_2005/ln/qma.pdf.
- [TT23] Ewin Tang and Kevin Tian. A CS guide to the quantum singular value transformation. arXiv preprint, arXiv:2302.14324, 2023.
- [WDL21] Jiasu Wang, Yulong Dong, and Lin Lin. On the energy landscape of symmetric quantum signal processing. arXiv preprint, arXiv:2110.04993, 2021.

[YLC14] Theodore J. Yoder, Guang Hao Low, and Isaac L. Chuang. Fixed-point quantum search with an optimal number of queries. *Phys. Rev. Lett.*, 113(21):210501, 2014.

On the optimality of QSP/QSVT

Lower bound for eig. transformation; Thm. 73 [GSLW19]

Let $I \subseteq [-1,1]$, $a \ge 1$ and suppose U is a (1,a,0)-block encoding of an unknown Hermitian matrix H with the promise that the spectrum of Hlies within I. Let $f: I \to \mathbb{R}$, and suppose access to a quantum circuit V that implements a $(1, b, \varepsilon)$ -block encoding of f(H) using T applications of *U* for all *U* satisfying the promise. Then for all $x \neq y \in I \cap [-1/2, 1/2]$ we have that

$$T = \Omega \left[\frac{|f(x) - f(y)| - 2\varepsilon}{|x - y|} \right]$$

Lower bound for quantum matrix functions; from [MS24]

For any continuous function $f(x): [-1,1] \to [-1,1]$, there is a 2-sparse Hermitian matrix A with $|A| \leq 1$ and two indices i, j such that $\Omega(\deg_{\varepsilon}(f))$ queries to A are required in order to compute $\langle i|f(A)|j\rangle \pm \varepsilon/4$.